АКАДЕМИЯ НАУК УССР

ФИЗИНА НИЗНИХ ТЕМПЕРАТУР

A.A. GALKIN

УДК 538.1; 539.28

А. А. ГАЛКИН, В. А. ПОПОВ, П. И. ПОЛЯКОВ. В. Г. СЫНКОВ

ЗАВИСИМОСТЬ АФМР В СиСl₂ · 2H₂О ОТ ТЕМПЕРАТУРЫ И ГИДРОСТАТИЧЕСКОГО ДАВЛЕНИЯ В НАКЛОННОМ МАГНИТНОМ ПОЛЕ

Исследована зависимость резонансных свойств CuCl₂ $2H_2O$ в области низких частот $v \approx 0.7 - 4.9$ *Гец* от гидростатического давления (p = 0 - 11.2 кбар) и температуры ($T = 1.68 - 4.2^{\circ}$ K). Проведено сравнение теории и эксперимента. Найдены значения магнитоупругих параметров, определяющих зависимость обменных и релятивистских параметров AФM от гидростатического давления.

После первых исследований антиферромагнитного резонанса (АФМР) в монокристалле CuCl₂ · 2H₂O [1-3] изучение резонансных свойств антиферромагнетиков (АФМ) стало важным средством получения информации о параметрах антиферромагнетика и их зависимости от температуры и внешнего магнитного поля. Кроме того, существенный интерес представляет изучение влияния гидростатического давления на АФМР. Относительная простота зависимости параметров АФМ от гидростатического давления позволяет экспериментальным путем определять параметры магнитоупругой связи и изучать зависимость обменных и релятивистских взаимодействий в АФМ от межатомных расстояний. Особый интерес представляет изучение действия большого гидростатического давления в окрестности точек фазовых переходов (ФП), которое дает возможность получить информацию о кривых фазового равновесия. Этим, по-видимому, и обусловлено появление большого числа работ, посвященных исследованию влияния давления в магнитоупорядоченных веществах [⁴⁻⁹]. Недавно почти одновременно были выполнены исследования АФМР в монокристалле CuCl₂ · 2H₂O [¹⁰] и спресованном порошковом образце Fe Cl₂ [¹¹] в условиях высокого гидростатического давления.

Целью настоящей работы является получение информации о магнитыупругих параметрах, зависимости обменных полей и полей магнитной анизотропии от давления, а также о влиянии давления на условия реализации промежуточного состояния при опрокидывании магнитных подрешеток в CuCl₂ · 2H₂O. Для обеспечения полноты информации, необходимой для надежной теоретической интерпретации магнитоупругих свойств CuCl₂ × × 2H₂O, исследование AФMP проводилось в широком интервале частот, давлений и температур в магнитном поле, параллельном легкой оси и направленном под углом к ней.

Методика эксперимента

Для наблюдения AФMP в условиях высокого гидростатического давления нами разработана специальная камера с фиксирующим зажимом (рис. 1). Камера выдерживала давление до 15 кбар и позволяла наблюдать

4 5-490

явления резонанса в антиферромагнитном кристалле CuCl₂ · 2H₂O в дециметровом диапазоне при гелиевых температурах.

Отметим основные конструктивные особенности камеры: диаметр рабочего канала 8,5 мм, внешний диаметр 31 мм. Усилие от гидравлического пресса передается на плунжер 16 из бериллиевой бронзы БрБ2, прошедшей термомеханическую обработку. Камера со стороны плунжера уплотнена кольцами 13, 15 из бериллиевой бронзы HRC-33-36 (при работе с пентаном добавляется тефлоновое кольцо 14). Уплотнительные кольца фиксируются на плунжере винтом 12. Фиксация плунжера 16 осуществляется гайкой 17, гайка 18 служит для извлечения плунжера с целью осмотра или перезаливки камеры. Радиочастотный обтюратор 3 уплотняется при помощи гайки 1 свинцовым или тефлоновым кольцом 5 в комбинации с противоэкструзионными кольцами 4, выполненными из бериллиевой бронзы. На задней части обтюратора нарезана резьба для навинчивания съемника.

Рис. 1. Схема камеры высокого давления.

Коаксиальные вводы 6 и 7 вклеены на аральдитовой смоле АА — 004. Для увеличения интервала давлений, внутри которого деформации деталей камеры остаются упругими, была проведена термомеханическая обработка корпуса камеры 10, плунжера 16 и обтюратора 3. Обработка камеры заключалась в автофреттировании ее с помощью последовательного проталкивания через канал высокопрочных опраеок — дорнов (сталь ХВГ, HRC-60-62), позволяющих контролировать степень упрочнения [¹²].

Для наблюдения АФМР использовался радиоспектроскоп с резонатором проходного типа [¹³]. От генератора СВЧ энергия подавалась на коаксиальный ввод 7. Образец 9 помещался в центре спирали 8 на полистироловом держателе. С коаксиального ввода 6 энергия СВЧ через разъем 2 передавалась на приемный тракт. Частоты контролировались по сигналу поглощения образца свободного радикала дифенилпикрилгидразила, помещенного в резонатор.

Измерение давления и проверка упругости передающей среды (керосино-масляная смесь) производились бесконтактным методом [¹⁴]. Шайба из чистого олова 11 диаметром 6 мм и высотой 1 мм наклеивалась на винт 12. Температура перехода олова в сверхпроводящее состояние измерялась по давлению паров гелиевой ванны.

Экспериментальные результаты

Резонансные свойства CuCl₂ · 2H₂O исследовались в интервале температур 1,68° $\leq T \leq 4,2°$ К при гидростатических давлениях p = 0; 5,2; 9,2; 11,2 кбар. Рабочие частоты $v_1 = 0,7 \Gamma e u, v_2 = 2,85 - 3,15 \Gamma e u$ и $v_3 = 4,5 - 4,88 \Gamma e u$ выбирались с таким расчетом, чтобы было возможно наблюдение АФМР в промежуточном состоянии [¹⁵]. Внешнее магнитное поле H ориентировалось в плоскости кристалла *ab*.

Результаты измерений представлены на рис. 2,3, где изображены резонансные изохроны, полученные при различных давлениях и темпера-

Рис. 2. Зависимость $H_p(\psi)$ для различных частот у, Гец и давлений р, кбар (T = 1,68°K): $p_1 = 0, v_2 = 3,14$ (●), $v_3 = 4,88$ (○); $p_2 = 5,2, v_2 = 3,1$ (▲), $v_3 = 4,65$ (△); $p_3 = 9,2, v_2 = 2,95$ (♥), $v_3 = 4,60$ (♥); $p_4 = 11,2, v_2 = 2,85$ (●), $v_3 = 4,48$ (□). Сплошные линии — теоретический расчет для (p_1 , v_3) и (p_2 , v_3).

Рис. 3. Зависимости резонансных полей и угла срыва ψ_{f} от давления при $T = 1,68^{\circ}$ К и v = 3 Гец: $\bigcirc -H_{1p}; \bigtriangleup -H_{2p}; \Box -H_{f}; \triangledown -\psi_{f}$.

сное поле. Резонанс исчезал при малейшем отклонении поля **H** от оси *a* в плоскости *ab*. При фиксированных температурах и давлении в поле **H** || **a** боль-

шее резонансное поле H_{2p} в пределах точности эксперимента не зависит от частоты у и соответствует поглощению в антиферромагнетике, находящемся в промежуточном состоянии [^{15, 16}]. При этом разность между бо́льшим H_{2p} и меньшим H_{1p} резонансными полями на фиксированной частоте уменьшается с повышением давления, а сами поля увеличиваются.

С увеличением давления при постоянной частоте и с уменьшением частоты при постоянном давлении угол срыва $A\Phi MP \psi_i$ уменьшается, а поле срыва H_i увеличивается. Обработка диаграммы рис. 2 позволила восстановить изохронные зависимости $\psi_i(p)$ и $H_i(p)$ (рис. 3) и изобарные зависимости $\psi_i(v)$ и $H_i(v)$ (рис. 4). На рис. 3 представ-

Рис. 4. Изобарные зависимости $H_f(v)$, $\psi_f(v)$ при $T = 1,68^{\circ}$ К; $\nabla - H_f$, $O - \psi_f$ при $p_1 = 0$; $\nabla - H_f$, $\bigcirc -\psi_f$ при $p_4 = 11,2$ кбар. Сплошные линии теоретический расчет $H_f(v)$ и $\psi_f(v)$.

Рис. 5. Зависимость $H_p(\psi)$ для различных температур, частот v, Гец и давлений μ , кбар: $p_1 = 0, v_1 = 0.76, v_2 = 3.14, v_3 = 4.88; p_2 = 5.2; v_1 = 0.73, v_2 = 3.1, v_3 = 4.65; p_3 = 9.2, v_1 = 0.68, v_2 = 2.92, v_3 = 4.60; p_4 = 11.2, v_1 = 0.64, v_2 = 2.85, v_3 = 4.48; v_1 - \Delta, v_2 - -X, v_3 - \bigcirc, \Box, \diamondsuit$

лены также зависимости H_{1p} и H_{2p} для $\nu = 3 \Gamma c \mu$. При p = 0 резонансное поглощение надежно наблюдалось на всех частотах только при $T \leqslant 3^{\circ}$ К. С повышением давления предельная температура наблюдения АФМР росла и при давлении $p > 9 \kappa 6 \alpha p$ достигала $4, 2^{\circ}$ К, т. е. практически темпера-

туры Нееля при p = 0. Увеличение температурного интервала, в котором наблюдается АФМР в CuCl₂ · 2H₂O, отмечалось нами ранее [¹⁰].

Повышение температуры вызывало смещение изохрон в область более сильных полей и уменьшение угла срыва АФМР при всех исследованных давлениях и частотах. Независимо от частоты ВЧ поля и величины давления впадина на изохронах со стороны бо́льшего резонансного поля уменьшалась и с увеличением температуры исчезала (рис. 5).

Зависимости резонансных полей $H_{1, 2p}$ от температуры в случае $\mathbf{H} \parallel \mathbf{a}$ на частотах $v_2 \approx 3 \Gamma c \mu$ и $v_3 \approx 4,7 \Gamma c \mu$ при p = 0; 5,2; $11,2 \kappa \delta a p$ представлены на рис. 6. С увеличением давления градиент (dH_p/dT) в среднем

Рис. 6. Зависимость резонансных полей от температуры при р, кбар и частотах v, Ггц: $p_1 = 0$, $v_2 = 3,14(\times)$, $v_3 = 4,88(\bigcirc)$; $p_2 = 5,2$; $v_2 = 3,1(\times)$; $v_3 = 4,65(\Box)$; $p_4 = 11,2$; $v_2 = 2,85(\times)$; $v_3 = 4,48(\diamondsuit)$. Сплошные линии — теоретический расчет при (p_1, v_3) и (p_4, v_3) .

уменьшается. На рис. 7 изображены зависимости $H_f(T)$ и $\psi_f(T)$ поля и угла срыва АФМР при $\nu = \nu_3 \approx 4,7 \ \Gamma c \mu$ и $p = 0; 9,2 \ \kappa \delta a p$, полученные в результате обработки изохрон $H = H_p(\psi)$ (рис. 2, 3).

Теория

Возрастание резонансных полей в CuCl₂ · 2H₂O с увеличением гидростатического давления связывалось ранее [¹⁷] только с увеличением полей магнитной анизотропии. Однако, как это следует из [^{10, 11}], давление расширяет температурную область наблюдения АФМР, что может объясняться увеличением температуры Нееля T_N , а следовательно, и обменных интег-

ралов. Учитывая экспоненциальную зависимость обменных интегралов от межатомных расстояний, правильнее было бы учитывать не только зависимость полей анизотропии от давления, но и более сильную зависимость от него обменных полей. Поэтому будем исходить из зависимости энергии АФМ от давления [¹⁷]

$$E = M_0^2 [2\delta m^2 + (\beta + \beta') m_x^2 + + (\rho + \rho') m_y^2 + (\beta - \beta') l_x^2 + + (\rho - \rho') l_y^2 - 2\mathbf{mh}], \qquad (1)$$

где

 $\mathbf{m} = (2M_0)^{-1} (\mathbf{M}_1 + \mathbf{M}_2), \mathbf{l} = (2M_0)^{-1} (\mathbf{M}_1 - \mathbf{M}_2), \mathbf{h} = \mathbf{H}M_0^{-1}$, а зависимость обменного параметра и параметров магнитной анизотропии от давления имеет вид

$$\begin{split} \delta &= \delta_0 + \lambda_z'' p, \ \beta + \beta' = \beta_0' + \lambda_x' p, \\ \rho + \rho' &= \rho_0' + \lambda_y' p, \ \beta - \beta' = \beta_0 + \lambda_x'' p, \\ \rho - \rho' &= \rho_0 + \lambda_y'' p. \end{split}$$

Рис. 7. Зависимость H_{f} и ψ_{f} от температуры: при $p_{1} = 0$, $v_{3} = 4,88$ Гги; $\Box - H_{f}$; $\bigcirc -\psi_{f}$; при $p_{3} = 9,2$ кбар, $v_{3} = 4,60$ Гги; $\blacksquare - H_{f}$, $\frown -\psi_{f}$. Сплошные линии — теоретический расчет.

Используя обычную методику уравнений Ландау — Лифшица, легко найти выражение для резонансных частот в наклонном магнитном поле *H*.

Рассмотрим сначала резонансные частоты АФМ при $\psi = 0$. К сожалению, информация о полной аналитической зависимости резонансных частот двухосного АФМ от температуры (даже в случае $T \ll T_N$) отсутствует. В работе [¹⁸] была учтена лишь зависимость, связанная с χ_{\parallel} , χ_{\perp} , а температурная зависимость характеристических полей должна была определяться экспериментально [¹⁹]. В работе [²⁰] в области $T \ll T_N$ была вычислена температурная зависимость частот АФМР фазы l_{\parallel} при H = 0 и фазы l_{\perp} при $\psi = 0$. Используя результаты работ [¹⁸, ²⁰], при поле, направленном вдоль легкой оси, и $T \ll T_N$ частоты АФМР фазы l_{\parallel} можно представить в виде

$$\begin{split} & \omega_{1,2}^2 = \gamma^2 \left[\alpha H^2 + \frac{1}{2} \left(H_{a1}^2 + H_{a2}^2 \right) \pm \right. \\ & \pm \sqrt{\left[\alpha H^2 + \frac{1}{2} \left(H_{a1}^2 + H_{a2}^2 \right)^2 - \alpha^2 \left(H_1^2 - H^2 \right) \left(H_{12}^2 - H^2 \right) \right]}, \end{split}$$

где поля H_{a1} и H_{a2} , определяющие частоты АФМР при H = 0, в спинволновом приближении, согласно [²⁰], равны

$$H_{ai} = H_{ai0} - aT^2; \ H_{a10}^2 = M_0^2 (2\delta + \rho + \rho') (\beta - \beta'); H_{a20}^2 = M_0^2 (2\delta + \beta + \beta') (\rho - \rho'); \ a = 0,07 \ \kappa_{\beta}/\rho a\partial.$$
(4)

Меньшее из полей H_1 и H_{12} определяет поле H, при котором $\omega_2 = 0$, т. е. границу устойчивости фазы $l_{||}$ при опрокидывании магнитных подрешеток в плоскость *ab* или *ac*. В соответствии с [²⁰],

$$H_{1}(T) = H_{10} + aT^{2}; \quad H_{12}(T) = H_{120} + aT^{2}; H_{10}^{2} = M_{0}^{2}(2\delta + \rho + \rho')(\rho - \rho'); \quad H_{120}^{2} = M_{0}^{2}(2\delta + \beta + \beta')(\beta - \beta').$$
(5)

Параметр а, согласно [18], связан с X_{II} и X₁ и составляет

$$\alpha = 1 - (\chi_{\parallel}/\chi_{\perp}) \approx 1 - 4aT^2 H_{\pi 0}^{-1}.$$
 (6)

Здесь использованы значения $\chi_{||}$, χ_{\perp} в спин-волновом приближении [^{21, 22}]. Поле H_{n} , при котором фазы $l_{||}$ и l_{\perp} находятся в равновесии, определяется из условия равенства термодинамических потенциалов этих фаз:

$$H_{\rm n}(T) = H_{\rm n0} + aT^2, \ H_{\rm n0} = M_0 \sqrt{(2\delta - \rho + \rho')(\rho - \rho')}.$$
(7)

Влияние гидростатического давления на частоты (3) будем учитывать, следуя [¹⁷], путем перенормировки обменной константы и констант магнитной анизотропии. В области $H_1 - H \ll H_1$ нижнюю ветвь $\omega_2(p, H, T)$, согласно [¹⁷], можно приближенно записать в виде

$$H_{1p}^{2} \approx H_{1}^{2}(p, T) - \frac{\omega^{2}}{\gamma^{2}} \frac{r_{0} + 3 + (A_{3} - 3A_{2}) p}{r_{0} - 1 + (A_{3} - A_{2}) p} (1 + 4aT^{2}H_{n0}^{-1});$$
(8)

$$H_{1}(p, T) = H_{1}(T) \sqrt{(1 + A_{1}p)(1 + A_{2}p)}, \quad r_{0} = \beta_{0}\rho_{0}^{-1}, \quad (9)$$

где $A_{1} \approx \left(\lambda_{z}'' + \frac{1}{2}\lambda_{y}''\right)\delta^{-1}, \quad A_{2} = \lambda_{y}''\rho_{0}^{-1}, \quad A_{3} = \lambda_{z}''\rho_{0}^{-1}.$

Для нижней ветви АФМР фазы l₁, согласно [²⁰],

$$\omega_{\perp} \approx \gamma \sqrt{H^2 - H_2^2(p, T)}, \quad H_2^2(p, T) = H_{20}^2 \left(\frac{(1 + A_4 p)^2}{(1 + A_1 p)^2} - 2aT^2 H_{20}^{-1} \right), \quad (10)$$

где

(P)

$$A_4 \approx (\lambda_z'' - 1/2\lambda_y'') \, \delta^{-1}; \ H_{20} = H_{10} \, (2\delta_0 - \rho_0)/(2\delta_0 + \rho_0).$$

Наконец, зависимость поля Н_п от давления описывается выражением

$$H_{\pi}(p, T) = H_{\pi}(T) \sqrt{(1 + A_4 p)(1 + A_2 p)}.$$
 (11)

Формулы (3) — (11) описывают зависимость АФМР от температуры и давления в случае Н || а. АФМР в наклонном поле (в плоскости *ab*) можно приближенно описать, если учесть, что разность $(H_{2p} - H_f) \sim H_f \sin \psi_f$ (см. рис. 2, 3). Для этого удобно воспользоваться выражением для частот АФМР в поле H, составляющем с осью *a* угол ψ , значение которого находится в пределах ($\rho_0/2\delta_0$) $< \psi \ll 1$ [¹⁶]:

$$\omega_{1,2} = \gamma H_c \left[R \pm \sqrt{R^2 - Q} \right]^{1/2};$$
(12)
$$2R = z + r - 2 + \frac{f(2f + 3z + 1)}{2f + z - 1}; \quad Q = (r - 1 + f)(z - 1 + 2f);$$

$$2f = 1 - z + [(z - 1)^2 + 4z \sin^2 \psi]^{1/2}; \quad z = H^2 H_c^{-2}; \quad r = (\beta - \beta') (\rho - \rho')^{-1}, \quad (13)$$

где $H_c^2 = 2\delta(\rho - \rho')M_0^2$, что приблизительно совпадает с полем «спинфлоп»-фазового перехода, происходящего в поле Н || а. В случае | $H^2 - H_c^2$ | $H_c^{-2} > (\rho_0/2\delta_0)$, $\psi > (\rho_0/2\delta_0)$, приняв $f \ll 1$, из (12), (13) найдем для нижней ветви $\omega_2(H, \psi)$, в соответствии с [²⁴], выражение

$$\omega_2^2 = (\gamma H_o)^2 \frac{(r-1)\left[(z-1)^2 + 4\sin^2\psi\right]}{(r+1)\left[(z-1)^2 + 4\sin^2\psi\right]^{1/2} + 2(1-z)}.$$
(14)

54

Дифференцируя ω_2 по H, установим, что на плоскости (ω , H) ветвь $\omega_2(H)$ имеет минимум в точке ($\omega_{2\min}$, $H_{2\min}$)

$$H_{2\min} = H_c \left(1 - b \sin \psi\right); \ \omega_{2\min}^2 = 2 \left(\gamma H_c\right)^2 \frac{(r-1) \left(1 + b^2\right) \sin \psi}{(r+1) \left(1 + b^2\right)^{1/2} + 2b},$$
(15)

$$b = (2q)^{-1} \left[-(q+3) + \sqrt{(q+3)^2 + 4q} \right], \ q = \left(\frac{r+1}{2}\right)^2 - 1.$$
(16)

Возникновение минимума у нижней ветви $\omega_2(H)$ соответствует резонансной диаграмме двухосного $A\Phi M$ в закритической области $\psi > \psi_{\kappa}$ (см. рис. 3 работы [²⁴]). При фиксированной частоте ω ВЧ поля из выражений (15) определяются $\psi = \psi_f$ и поле срыва $A\Phi MP H = H_f$, т. е. значения ψ и H, при которых частота соответствует минимуму кривой $\omega_2(H)$. Как ψ_f , так и $(H_f - H_{\pi})$ пропорциональны ω^2 . Разрешая (14) относительно $\sin^2 \psi$, получаем

$$\sin^{2}\psi_{1,2} = \frac{1}{4} \left\{ \frac{\omega_{0}^{4}}{2} \left(\frac{r+1}{r-1} \right)^{2} + 2 \frac{\omega_{0}^{2} (1-z)}{r-1} - (1-z)^{2} \pm \frac{\omega_{0}^{3} \frac{r+1}{r-1}}{\frac{r-1}{4} \left(\frac{r-1}{r-1} \right)^{2}} + 2 \frac{1-z}{r-1} \right\}.$$
(17)

Выражение (17) в силу сделанных приближений не описывает детально поведения резонансных диаграмм, связанного с изменениями $\Delta H < 0,1 \kappa$ и $\Delta \psi < 1^{\circ}$, однако в области, где

$$H^{2} < H_{\pi}^{2} \left(1 + \frac{\omega_{0}^{*}(r+1)^{2}}{8(r-1)} \right), \qquad \omega_{0} = \frac{\omega}{\gamma H_{\pi}},$$
(18)

оно дает простое и качественно правильное описание таких диаграмм.

Сравнение теории с экспериментом

Проведем это сравнение сначала для $T = 1,68^{\circ}$ К.

Систематическое возрастание резонансных полей с увеличением давления, экспериментально наблюдаемое в CuCl₂ · 2H₂O, находится в удовлетворительном согласии с теоретическими зависимостями. Приняв $H_{1p} = H_{11}^{(p)}$ и $H_{2p} = H_{\pi} (H_{\pi} -$ поле фазового перехода $l_{11} \rightleftharpoons l_{\perp}$), сравним (8) – (11) с экспериментальными данными. Предположив, что $\lambda_z^{||} \gg \lambda_y^{"}$, с учетом $H_1(p, T) \approx H_{\pi}(p, T)$ представим эти выражения в виде, удобном для сравнения с экспериментом:

$$H_{1p} = \left[H_{\pi}^{2}(p, T) - \gamma^{-2} \omega^{2} \frac{r_{0} + 3 + (A_{3} + 3A_{2}) p}{r_{0} - 1 + (A_{3} - A_{2}) p} \right],$$
(19)

$$H_{2p} = H_{n}(p, T) = H_{n}(T) \sqrt{(1 + A_{1}p)(1 + A_{2}p)},$$
(20)
rge $A_{1} \approx \lambda_{2}^{"}\delta^{-1} \approx A_{4}, A_{2} = \lambda_{\mu}^{"}\rho_{0}^{-1}, A_{3} = \lambda_{x}^{"}\rho_{0}^{-1}, r_{0} = \beta_{0}\rho_{0}^{-1}.$

Используя экспериментальные значения H_{2p} (p = 11,2 и 5,2 *кбар*) и H_{1p} $(p = 11,2 \kappa \delta ap)$ при $\gamma = 3 \Gamma cu$ и $T = 1,68^{\circ}$ К, а также значение $r_0 = 2,9$ [¹⁶], найдем $A_1 \approx A_2 \approx 0,022 \kappa \delta ap^{-1}, A_3 = 0,3 \kappa \delta ap^{-1}$. Учитывая значение $\delta_0 = \chi_{\perp}^{-1} = 2 \cdot 10^{-3}$ и $\rho_0 \approx 6,5$ [¹⁷] для CuCl₂ · 2H₂O, найдем $\lambda_z^{*} = 44 \kappa \delta ap^{-1}$, $\lambda_y^{"} = 0,14 \kappa \delta ap^{-1}, \lambda_x^{"} = 2 \kappa \delta ap^{-1}$. Поскольку $T_N \sim \delta$, T_N зависит от давления. Найденные значения $\lambda_y^{"}$ и $\lambda_x^{"}$ хорошо согласуются с оценочными значениями магнитоупругих постоянных $\lambda \sim (1 \div 10^{-8}) \kappa \delta ap^{-1}$, в то время как значение $\lambda_z^{"}$ на порядок превышает их максимальную оценку, что обусловлено, видимо, большей чувствительностью обменных взаимодействий к уменьшению межатомных расстояний при увеличении давления по сравнению с релятивистскими. В результате проведенного нами учета зависимости

55

обменного параметра δ от давления полученные нами и авторами [¹⁷] значения λ''_y и λ''_x несколько различаются, однако порядки этих величин остались прежними. Теоретические зависимости $H_{2p}(p)$, $H_{1p}(p)$, построенные согласно (19) и (20) при найденных значениях λ''_z , λ''_y , λ''_x , представлены на рис. З и находятся в согласии с экспериментальными данными. Они хорошо передают уменьшение разности $H_{2p} - H_{1p}$ и увеличение резонансных полей H_{1p} и H_{2p} с увеличением давления p. Сравним теперь экспериментальные зависимости ψ_i и поля срыва $A\Phi MP$ H_i от давления и частоты с теоретическими. Как следует из (15), теоретические зависимости этих величин можно представить в виде

$$H_{f} = H_{\pi} \left[1 - B \omega^{2} \left(\gamma H_{\pi} \right)^{-2} \right], \quad \psi_{f} = A \omega^{2} \left(\gamma H_{\pi} \right)^{-2}, \tag{21}$$

где коэффициенты B(p) и A(p) легко находятся из (15). При сравнении (21) с экспериментом необходимо учесть, что параметр r зависит от давления следующим образом:

 $r = (r_0 + A_3 p) (1 + A_2 p).$ (22)

Теоретические изохронные и изобарные зависимости представлены на рис. З и 4 и удовлетворительно описывают эксперимент. В частности, первая формула (21) хорошо описывает уменьшение разности $H_{\rm II} - H_i$ с увеличением давления.

Сравним теперь выражение (17) с данными эксперимента. Подставляя в (17) значения $H_{\rm m}(p, T)$ вместо $H_{\rm m}$ и учитывая зависимость r от давления (22), убеждаемся, что в области (18) выражение (17) достаточно хорошо количественно описывает зависимость $H_{\rm p}(\phi)$ на частотах 4,5—4,88 Γeq при давлениях вплоть до $p \approx 5 \kappa 6 a p$.

Наконец, учитывая (2), (20) и равенство $A_1 = A_2$, находим, что величина интервала $\Delta H = H' - H_{\Pi} = 4\pi H_{\Pi} \chi_{\perp}$, в котором промежуточное состояние термодинамически стабильно, в пределах точности расчета не зависит в CuCl₂ · 2H₂O от давления.

Прежде чем проводить дальнейшее сравнение теории с экспериментом, уточним природу наблюдаемого поглощения при p=0. Величины бо́льшего резонансного поля на частоте у2 = 3,14 Гец и резонансного поля на частоте $v_1 \approx 0,7$ Гец равны $H_{pv_2} \approx H_{pv_1} \approx H_{\pi} = 6,7$ кэ при $\psi = 0$ и соответствуют значению поля фазового перехода $l_{\parallel} \rightleftharpoons l_{\perp}$ при $T = 1,68^{\circ}$ K [²⁵], вследствие чего можно сделать вывод, что они сбусловлены поглощением в промежуточном состоянии (ПС), подробно проанализированном в [¹⁶]. Меньшие резонансные поля на частотах $y_2 = 3,14 \Gamma z u$ $y_3 = 4,88 \Gamma z u$ лежат в области, где $H_{\rm p} < H_{\rm n}$, и обусловлены поглощением в однородной фазе l_{ll}. Сложнее объяснить природу поглощения в бо́льшем резонансном поле на частоте v₃ = 4,88 Гец. При значениях угла ψ, близких к нулю, наблюдаемая экспериментально резонансная линия становилась настолько слабой, что ее положение нельзя было надежно определить. Для выяснения природы этой линии определим по формулам (20), (21) работы [16] значение поля $H_2(T)$, ограничивающего снизу область устойчивости однородной фазы l_{\perp} . Как видно из рис. 1, поле, соответствующее максимуму изогоны $v_3 = 4,88 \, \Gamma e u$, равно $H_m = 6,82 \, \kappa s$. Принимая $H_v = \gamma^{-1} v = 0,33 \, \kappa s$ (для у в Ггц), $H_{n0} = 6,5 \kappa$, находим $H_2 = 6,53 \kappa$ при T = 1,68° К. Резонансное поле для фазы l_{\perp} на частоте 4,88 Гец находится в пределах $H_{2p} = 6,73 \ \kappa \vartheta > 6,70 \ \kappa \vartheta = H_{\Pi}$. Интервал $\Delta H = H' - H_{\Pi} = 4\pi \chi_{\perp} H_{\Pi}$ реализации ПС в области $T \le 1,68^{\circ}$ К мало изменяется и по теоретической оценке составляет около 40 \mathfrak{s} [¹⁶]. Этот интервал охватывает участок нижней резонансной ветви однородной фазы l_{\perp} , заключенный между частотами ω_{\perp} (H_{π}) = $= 4,62 \ \Gamma e u < \omega < \omega_{\perp} (H') = 5,03 \ \Gamma e u$. В тех же интервалах частот и полей существует ветвь резонансного поглощения, обусловленная промежуточным

56

состоянием. Однако поскольку линия поглощения при $\psi = 0$ для бо́льшего резонансного поля на частоте 4,88 *Гец* слабо выражена, невозможно решить, принадлежит ли она однородной фазе l_{\perp} или неоднородному промежуточному состоянию. При повышении давления или температуры ситуация может существенно измениться.

Действительно, с помощью значений A₁, A₂, A₃ и (10) получим

$$\omega_{\perp} (H_{\pi}(p, T)) \approx (1 + 0.02p) \omega_{\perp} (H_{\pi}(0, T)), \tag{23}$$

а при давлении 5,2 кбар ω_{\perp} (H_n) \approx 5,08 $\Gamma e u$, вследствие чего на всех частотах, меньших 5 $\Gamma e u$, бо́льшее резонансное поле связано с поглощением в ПС.

Сравним теперь теоретические формулы с экспериментальными резуль татами. Рассмотрим сначала случай $\psi = 0$. Выбрав в качестве бо́льшего резонансного поля $H_{2p} = H_{\pi}(p, T)$, сравним выражения (19) и (20) с экспериментом.

При этом необходимо учитывать, что множитель a перед T^2 также зависит от давления:

$$a(p) = a(0)(1 + A_1 p)^{-1}.$$
(24)

На рис. 6 приведены теоретические кривые при $p = 0; 5,2; 11,2 \kappa f a a b$ частотах » = 2,85 — 4,88 Гец. При давлении p = 0 в области температур $T > 2^{\circ}$ К наблюдается заметное отклонение теоретических кривых от экспериментальных. С увеличением давления степень этого отклонения уменьшается, и при $p=11,2~\kappa fap$ практически во всем исследованном интервале $1,68^{\circ}\,\mathrm{K} \leqslant T \leqslant 4,2^{\circ}\,\mathrm{K}$ наблюдается хорошее совпадение теоретических кривых $H_p(T)$ с экспериментальными. Поскольку использованные нами температурные зависимости характеристических полей получены путем расчетов в спин-волновом приближении, очевидно, справедливо заключить, что увеличение давления расширяет температурную область применимости спинволновой теории. По-видимому, этим можно объяснить и расширение области наблюдения AФMP в CuCl₂ · 2H₂O (до 4,2° K при $p = 11,2 \kappa \delta a p$). Необходимы, однако, дополнительные экспериментальные исследования зависимости температуры Нееля от давления. На рис. 7 представлены теоретические зависимости H_i и ψ_i от температуры, построенные согласно (21), (15), (16). И в этом случае при увеличении давления согласие теоретических и экспериментальных зависимостей улучшается.

Для того чтобы понять причину исчезновения с повышением температуры впадины на изогонах (см. рис. 3), учтем, что поле $H_2(T)$, согласно [¹⁶], испытывает немонотонное изменение и с повышением температуры медленнее увеличивается, чем поле $H_{\pi}(T)$ (это подтверждается также полученным нами при $T = 1,68^{\circ}$ К значением $H_2 = 6,53$ кэ). Поскольку область максимума изогоны $H \approx H_m$ приближенно повторяет более медленное изменение поля однородной фазы l_{\perp} , а соседняя область (при $\psi = 0$) вместе с $H_{\pi}(T)$ более быстро смещается в сторону больших полей, впадина, уменьшаясь по глубине, исчезает при достаточно высокой температуре, зависящей от выбранной частоты.

Таким образом, проведенное сравнение экспериментальных и теоретических данных показывает их удовлетворительное согласие, как качественное, так и количественное.

Выводы

В результате проведенного анализа теории и эксперимента в ${\rm CuCl}_2 imes 2{\rm H}_2{\rm O}$ можно сделать следующие выводы.

1. Вычисленные магнитоупругие постоянные отличаются друг от друга на порядок ($\lambda''_{z} = 44 \ \kappa \delta a p^{-1} > \lambda''_{x} = 2 \ \kappa \delta a p^{-1} > 0, 14 \ \kappa \delta a p^{-1}$).

2. Параметр *r* анизотропии в плоскости *ab* A Φ M CuCl₂ · 2H₂O существенно зависит от давления, что должно приводить к увеличению разности резонансных частот при H = 0.

3. Наиболее сильную зависимость от давления имеет обменный параметр 8. Это должно приводить к заметному увеличению температуры Нееля при повышении давления.

4. Найденные значения магнитоупругих постоянных позволили при T = const объяснить уменьшение угла ψ_i и увеличение поля H_i срыва АФМР, уменьшение разностей $H_{2p} - H_{1p}$, $H_{2p} - H_i$ с увеличением давления (при $\omega = \text{const}$). Ширина интервала $\Delta H = H' - H_{n}$ реализации промежуточного состояния в пределах точности эксперимента от давления не зависит.

5. Восстановлена кривая фазового равновесия для $\Phi\Pi l \ l_{\parallel} \rightleftharpoons l_{\perp}$, которая имеет вид $H_{\Pi}(p, T) \approx 6.5 \div 0.07 T^2 \div 0.14$ (кэ) (T измеряется в градусах Кельвина, $p - в \kappa \delta a p$). Отсюда следует, что область реализации промежуточного состояния, а следовательно, и область наблюдения АФМР в ПС с увеличением давления смещаются в сторону больших магнитных полеи.

6. Проведенное экспериментальное и теоретическое изучение зависимости AФMP в CuCl₂ · 2H₂O от давления и температуры в наклонном магнитном поле показывает: а) повышение давления приводит к увеличению интервала температур, в которых наблюдается AФMP, до 4,2° K и выше и соответственно увеличивает область применимости спин-волнового приближения, используемого при вычислении температурной зависимости частот AΦMP; б) повышение давления приводит к смещению частотного интервала AΦMP в промежуточном состоянии в область более высоких частот; в) более слабая зависимость от температуры поля $H_2(T)$ по сравнению с полем $H_{\pi}(T)$ приводит при повышении температуры к исчезновению впадины на резонансных изохронах; г) с повышением температуры интервал углов ψ , внутри которого наблюдается AΦMP, при всех исследованных давлениях уменьшается.

Авторы благодарят В. Г. Барьяхтара за обсуждение работы.

Литература

- N. J. Poulis, J. Van den Handel. J. Ubbink, J. A. Poulis, C. J. Gorter. Phys. Rev., 82, 552, 1951.
- 2. J. Ubbink, N. J. Poulis, H. J. Gerritsen, C. J. Gorter. Physica, 18, 361, 1952.
- 3. J. Ubbink, J. A. Poulis, H. J. Gerritsen, C. J. Gorter. Physica, 18, 361, 1952.
- 4. H. Umebayashi, B. C. Frazer, G. Shirane, W. Daniels. Phys. Lett., 22, 407, 1966.
- 5. W. Kawai, F. Ono. Phys. Lett., 21, 279, 1966.
- 6. А. С. Пахомов. ФММ, 25, 593, 1968.
- К. П. Белов, А. М. Кадомцева, Т. С. Конькова, Т. М. Леднева, Т. Л. Овчинникова, В. А. Тимофеева. «Кристаллография», 13, 179, 1968.
- 8. К. П. Белов, А. М. Кадомцева. УФН, 103, 677, 1971.
- 9. В. А. Джидарян. ФММ, 25, 420, 1968.
- 10. А. А. Галкин, С. Н. Ковнер, П. И. Поляков. ДАН СССР, 208, 811, 1973.

11. K. C. Johnson, A. J. Sievers. Phys. Rev., B7, 1081, 1973.

Ю. Г. Проскуряков. Упрочняюще-калибрующие методы обработки. М., Машгиз, 1965.
 Ю. Н. Денисов, В. В. Калиниченко. ПТЭ, 2, 134, 1965.

- 14. Н. Е. Алексеевский, Н. Б. Брандт, Т. И. Костина. Изв. АН СССР. Сер. физ, 16, 233, 1952.
 - В. Г. Барьяхтар, А. А. Галкин, С. Н. Ковнер, В. А. Попов. ЖЭТФ, 58, 494, 1970.
 - A. A. Galkin, S. N. Kovner, V. A. Popov. Phys. status solidi (b), 57, 485, 1973.
 - 17. В. А. Попов, В. С. Кулешов. ФТТ, 16, 612, 1974.
 - 18. K. Yosida. Progr. Theor. Phys., 7, 425, 1952.
 - 19. H. J. Gerritsen. Physica, 21, 639, 1955.
 - 20. В. А. Попов, В. И. Скиданенко. ФТТ, 15, 899, 1973.
 - 21. М. И. Каганов, В. М. Цукерник. ЖЭТФ, 34, 106, 1958.
 - 22. Е. А. Туров, Ю. П. Ирхин. Изв. АН СССР. Сер. физ., 22, 1168, 1958.
 - 23. В. Г. Барьяхтар, Е. В. Зароченцев, В. А. Попов. ФТТ, 11, 2344, 1969.
 - 24. В. А. Попов, В. И. Скиданенко. Особенности резонансных свойств при опрокидывании магнитных подрешеток в наклонном магнитном поле. Препринт ФТИНТ. АН УССР, Харьков, 1971.
 - 25. G. E. G. Hardeman, N. J. Poulis. Physica, 21, 728, 1955.

Донецкий физико-технический институт АН УССР Физико-технический институт низких температур АН УССР Поступила в редакцию 17 сентября 1975 г.

A. A. GALKIN, V. A. POPOV, P. I. POLYAKOV, and V. G. SYNKOV

EFFECTS OF TEMPERATURE AND HYDROSTATIC PRESSURE ON INCLINED-FIELD AFMR IN CuCl₂ · 2H₂O

AFMR properties of $CuCl_2 \cdot 2H_2O$ at low frequencies $v \approx 0.7 - 4.9 \,GHz$ were studied as functions of hydrostatic head ($p = 0 - 11.2 \,kbar$) and temperature ($T = 1.68 - 4.2^{\circ}$ K). Experimental results are compared with theoretical predictions. The magnetoelastic parameters are deduced which determine pressure variation of the exchange and relativistic AFM parameters.

LIST OF SYMBOLS

v, cyclic frequency of the h. f. field; ρ , pressure; ψ , angle between the easy axis a and the external magnetic field, the latter oriented within the ab crystallog-raphic plane; T, temperature; $H_{1\rho}$ and $H_{2\rho}$, lower and upper resonance fields; ψ_{f} and H_{f} , AFMR failure angle and field; M_{1} and M_{2} , sublattice magnetic moments; δ and β , β' , ρ , ρ' , exchange parameter and magnetic anisotropy constants; $\chi_{||}$ and χ_{\perp} , parallel and perpendicular magnetic susceptibility; $l_{||}$ and l_{\perp} , antiferromagnetic and «spin-flop» phases; H_{a1} and H_{a2} , fields corresponding to the zero-field AFMR frequencies; H_{1} and H_{12} , fields determining the stability region of the $l_{||}$ phase with the magnetic sublattices flopping into either ab or ac plane, respectively; H_{n} , field at which the both phases are in equilibrium; ω , angular frequency: ω_{2min} and H_{2min} , frequency and field corresponding to the minimum on the $\omega_{2}(H)$ dependence at $\psi > \psi_{k}$; $\psi_{k} \approx (\rho_{0} + \rho')/4\delta$; $\omega_{0} = \omega/\gamma H_{c}$; $H_{11}^{(2)}$, resonance field of branch ω_{2} of the $l_{||}$ phase; H_{m} , field of the resonance isogon maximum; $\omega_{\perp}(H)$, resonance frequency for the l_{\perp} phase.

FIGURE CAPTIONS

Fig 1. High-pressure chamber.

Fig 2. Dependence $H_p(\psi)$ for various frequencies ν (in *GHz*) and pressures (in *kbar*) at $T = 1.68^{\circ}$ K: $p_1 = 0$, $\nu_2 = 3.14$ (•), $\nu_3 = 4.88$ (○); $p_2 = 5.2$, $\nu_2 = 3.1$ (▲), $\nu_3 = 4.65$ (△); $p_3 = 9.2$, $\nu_2 = 2.95$ (▼); $\nu_3 = 4.60$ (▽); $p_4 = 11.2$, $\nu_2 = 2.85$ (■), $\nu_3 = 4.48$ (□). The solid lines are calculated for p_1 , ν_3 and p_2 , ν_3 .

Fig 3. Resonance fields and failure angle ψ_f as functions of pressure at $T = 1.68^{\circ}$ K and $\gamma = 3 GHz$: $\bigcirc -H_{1p}$; $\bigtriangleup -H_{2p}$; $\Box -H_f$; $\nabla -\psi_f$.

Fig. 4. Constant-pressure dependences $H_f(v)$, $\psi_f(v)$ at $T = 1.68^\circ$ K: $\nabla - H_f$, $O - \psi_f$ at $p_1 = 0$; $\nabla - H_f$, $\bullet - \psi_f$ at $p_4 = 11.2$ kbar. The solid lines are calculated $H_f(v)$ and $\psi_f(v)$.

Fig 5. Dependence $H_{\rm p}(\psi)$ for various temperatures, frequencies (in *GHz*) and pressures p (in *kbar*): $p_1 = 0$, $v_1 = 0.76$, $v_2 = 3.14$, $v_3 = 4.88$; $p_2 = 52$, $v_1 = 0.73$, $v_2 = 3.1$, $v_3 = 4.65$; $p_3 = 9.2$, $v_1 = 0.68$, $v_2 = 2.29$, $v_3 = 4.60$; $p_4 = 11.2$, $v_1 = 0.64$, $v_2 = 2.85$, $v_3 = 4.48$; $v_1 - \Delta$, $v_2 - \times$, $v_3 - \bigcirc$, \Box , \diamondsuit .

Fig 6. The resonance fields as functions of temperature at various pressures p (in *kbar*) and frequencies ν (in *GHz*): $p_1 = 0$, $\nu_2 = 3.14$ (×), $\nu_3 = 4.88$ (○); $p_2 = 5.2$, $\nu_2 = 3.1$ (×); $\nu_3 = 4.65$ (□); $p_4 = 11.2$, $\nu_2 = 2.85$ (×); $\nu_3 = 4.48$ (◇). The solid lines are calculations for p_1 , ν_3 and p_4 , ν_3 .

Fig 7. H_f and ψ_f versus temperature: $p_1 = 0$, $v_3 = 4.88 \ GHz$, $\Box - H_f$, $\bigcirc -\psi_f$; $p_2 = 9.2 \ kbar$, $v_3 = 4.60 \ GHz$, $\blacksquare - H_f$, $\bigcirc -\psi_f$. The solid lines are calculations.